Last updated: October 19, 2012
This section is only applicable to the lab application.
PS
Data DC-HSDPA State
This parameter controls whether to set up a DC-HSDPA PS Data call. DC-HSDPA operation requires:
Mac-ehs
;Implicit
. when
PS Data UE IR Buffer Allocation is
set to Explicit
,
the number of HARQ processes can be 1 through 8, but the
memory size for each HARQ process can not be greater than
the number of soft channel bits for an implicit memory
partitioning with 6 processes per HS-DSCH channel (3GPP
TS 25.331 s8.6.5.6b). This parameter can only be changed when Call Status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:DCHSdpa[:STATe]
PS Data HS-DSCH MAC-d PDU Size Control
This setting
determines whether PS Data HS-DSCH
MAC-d PDU Size
or PS Data
HS-DSCH MAC-d PDU Size Manual
is to be used on HS-DSCH
channel.
GPIB command: CALL:HSDPa:SERVice:PSData:MACD:PDUSize:CONTrol
PS Data HS-DSCH MAC-d PDU Size
This parameter specifies the size of the MAC-d PDU that is used on the DTCH that is mapped to the HS-DSCH for an HSDPA PS data connection. The DTCH is the logical channel that carries the downlink user traffic data (for example, IP datagrams).
Some UEs
require a 656 bit MAC-d PDU size to achieve maximum data throughput
(because sending fewer blocks reduces the load on the UE's
CPU). 3GPP TS 34.108 s6.10.2.4.5.1 lists 656 bits as an alternate
MAC-d PDU size. PS Data HS-DSCH
MAC-d PDU Size
cannot be changed to 656 bits if PS
Data HS-DSCH Configuration Type is set to 7 or less (because
doing so would cause the MAC-d PDU to be too large for the
MAC-hs block).
This parameter can only be changed when connection status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:MACD:PDUSize
PS Data HS-DSCH MAC-d PDU Size Manual
When PS Data HS-DSCH MAC-d PDU Size Control
is set to Manual
, this setting determines the size of the MAC-d PDU that is
used on the DTCH that is mapped to the HS-DSCH for a HSDPA
PS data connection.
GPIB command: CALL:HSDPa:SERVice:PSData:MACD:PDUSize:MANual
PS Data Number of HARQ Processes
Sets the control state and value for the number of active HARQ processes.
The control state can be set to Auto or Manual mode. When the control state is set to Auto, the number of HARQ processes active in the MAC-hs layer is set such that the fewest number of HARQ processes are used that will still result in maximum throughput based on the Current UE HS-DSCH Category. These values for the AUTO control state are as follows.
23 | |
24 |
When the control state is set to a value (manual mode), the test set uses this value for the number of HARQ processes active in the MAC-hs layer.
See PS Data DC-HSDPA State on restrictions with DC-HSDPA operation.
This setting can only be changed when the call status is idle.
GPIB command:
Control State: CALL:HSDPa:SERVice:PSData:HARQ:PROCess:COUNt:CONTrol:AUTO
Manual Setting: CALL:HSDPa:SERVice:PSData:HARQ:PROCess:COUNt:MANual
PS Data Manual Num of HARQ Processes
for MIMO
This parameter
controls the number of active HARQ processes in the MAC_ehs
layer when PS Data HS-DSCH MAC
Entity
is set to MAC_ehs
and PS Data HSDPA MIMO State is set to On
.
This setting
can only be changed when Call
Status
is Idle
.
GPIB command: CALL:HSDPa:SERVice:PSData:MIMO:HARQ:PROCess:COUNt:MANuall
PS Data UE IR Buffer Allocation
Controls how the IR buffer size for each active HARQ process is determined.
When PS Data UE IR Buffer Allocation
is
set to Implicit
, the
total IR buffer size for the Current UE HS-DSCH
Category ("total number of soft channel bits"
in 3GPP TS 25.306 Table 5.1a) is divided equally among the
active HARQ processes. For DC-HSDPA, the soft memory buffer
is initially equally partitioned among the HS-DSCH transport
channels and then equally partitioned among the HARQ processes
per HS-DSCH transport channel. Using this setting helps ensure
that the HSDPA connection will be successfully established,
as the IR buffer size used by the test set is automatically
set to match the current UE category. However, to configure
the size of the IR buffer allocated to each HARQ process in
the user defined downlink, you may need to set
PS Data UE IR Buffer Allocation
to
Explicit
, and then set PS Data Explicit
UE IR Buffer Size accordingly.
When PS Data UE IR Buffer Allocation
is
set to Explicit
, the
IR buffer size allocated to each active HARQ process is determined
directly by the PS Data Explicit UE IR Buffer
Size setting. This setting allows you to allocate less
than your UE's maximum total IR buffer size. Note that if
you set the PS Data Explicit UE IR Buffer
Size beyond your UE's capability (based on the number
of HARQ processes), the HSDPA connection attempt will fail.
See PS Data DC-HSDPA State on restrictions with DC-HSDPA operation.
This setting can only be changed when call status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:MS:IREDundancy:BUFFer:ALLocation
PS Data Explicit UE IR Buffer Size
When PS Data UE IR Buffer Allocation is set to Explicit
, this setting determines
the size of the IR buffer allocated to each HARQ process.
The total IR buffer size is thus determined by multiplying
the PS Data Explicit UE IR Buffer
Size
by the PS Data Number of HARQ
Processes .
Note, different UE categories support different total IR buffer sizes ("total number of soft channel bits" in 3GPP TS 25.306 Table 5.1a). If you set the total IR buffer size beyond the specified limit for the Current UE HS-DSCH Category , the test set will post a warning, but will still allocate the total IR buffer size you've set. This will cause the HSDPA connection attempt to fail. The limits for the IR buffer size based on the UE category are listed in the table below. UE Categories 21,22,23 and 24 support DC-HSDPA.
IR Buffer Size Limit | |
---|---|
The range for this setting is 800-16000 by step of 800, 17600-32000 by step of 1600, 36000-80000 by step of 4000, 88000-160000 by step of 8000, and 176000-304000 by step of 16000, as per 3GPP TS 25.331 s10.3.5.7a.
See PS Data DC-HSDPA State on restrictions with DC-HSDPA operation.
This setting can only be changed when call status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:MS:IREDundancy:BUFFer:SIZE[:EXPLicit][:DCH]
PS Data
Explicit UE IR Buffer Size (FACH)
When PS Data UE IR Buffer
Allocation is set to Explicit
, this setting determines the size of the IR buffer allocated
to each HARQ process in HS-DSCH CELL_FACH operation mode.
The total IR buffer size is thus determined by multiplying
the PS Data Explicit UE IR Buffer
Size (FACH)
by the PS Data Number
of HARQ Processes and Manual Number of HARQ Processes.
This setting can only be changed when call status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:MS:IREDundancy:BUFFer:SIZE[:EXPLicit]:FACH
PS Data HS-DSCH MAC entity
If PS Data DC-HSDPA State is set to On
, you can not set this parameter to MAC-hs
because DC-HSDPA must be configured with MAC-ehs.
This setting can only be changed when call status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:HSDSchannel:MAC
Downlink AM RLC Mode
GPIB command: CALL:HSDPa:SERVice:PSData:RLC:DOWNlink:MODE
DL Flexible RLC Header Extension Special
Value
GPIB command: CALL:HSDPa:SERVice:PSData:RLC:DOWNlink:HEXTension:SVALue
DL Max PDU Payload Size
This setting
is only available when the PS Data HS-DSCH
MAC entity is set to MAC-ehs
and the Downlink AM RLC Mode is Flexible
.
This setting
determines the downlink maximum flexible AM RLC PDU payload
size. If the AM RLC SDU size is greater than the DL
Max PDU Payload Size
, it is segmented to multiple
RLC PDUs so that the payload in each PDU is equal to or less
than the DL Max PDU Payload Size
. The payload size in those PDUs which are not the last one
is set to DL Max PDU Payload
Size
, and the remaining segment will be put into the
last RLC PDU.
This setting can only be changed when call status is idle.
GPIB command: CALL:HSDPa:SERVice:PSData:RLC:DOWNlink:MAXimum:PDU:PSIZe
PS
Data User Defined Active HS-PDSCHs
This parameter controls the number of active HS-PDSCHs and is used along with the CELL_FACH PS Data Transport Block Size Index and CELL_FACH PS Data Modulation Type to determine the actual transport block size in HS-DSCH CELL_FACH operation mode.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:HSPDschannel:COUNt:FACH
PS
Data User Def Transport Block Size Index
This parameter controls the transport block size index and is used along with CELL_FACH PS Data Number of Active HS-PDSCHs and CELL_FACH PS Data Modulation Type to determine the actual transport block size for HS-DSCH CELL_FACH operation.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:TBSize:INDex:FACH
PS Data
User Defined Modulation Type
This parameter controls whether QPSK or 16QAM modulation is used on the currently active HS-PDSCH channels and is used along with CELL_FACH PS Data Number of Active HS-PDSCHs and CELL_FACH PS Data Transport Block Size Index to determine the actual transport block size for HS-DSCH CELL_FACH operation.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:MODulation[:TYPE]:FACH
Common HS-DSCH
DRX Parameters
There are five settings:
DRX
State
This parameter controls the HS-DSCH DRX operation in the test set. The setting is not applicable when Common HS-DSCH State is switched off.
This setting can only be changed
when Call/Data Status
is
Idle
.
GPIB command: CALL[:CELL]:CHSDschannel:DRX:STATe
T321
This setting can only be changed
when Call/Data Status
is
Idle
.
GPIB command: CALL[:CELL]:CHSDschannel:DRX:T321
DRX
Cycle FACH
This setting can only be changed
when Call/Data Status
is
Idle
.
GPIB command: CALL[:CELL]:CHSDschannel:DRX:CYCLe
DRX
Burst FACH
This setting can only be changed
when Call/Data Status
is
Idle
.
GPIB command: CALL[:CELL]:CHSDschannel:DRX:BURSt
Interruption
by HS-DSCH Data
This
setting can only be changed when Call/Data
Status
is Idle
.
GPIB command: CALL[:CELL]:CHSDschannel:DRX:INTerruption
PS
Data HSDPA MIMO State
This parameter controls whether to set up a MIMO PS Data HSDPA/HSPA call. This operation requires:
Mac-ehs
;PS Data DC-HSDPA State
is set to Off
; This setting
can only be changed when Call/Data
Status
is Idle
.
GPIB command: CALL:HSDPa:SERVice:PSData:MIMO[:STATe]
PS Data HS-DSCH Configuration Type
This parameter controls how the HS-DSCH is configured. There are three settings:
CQI Value
This setting uses the value assigned to CQI Value (separate parameter) along with the Current UE HS-DSCH Category to automatically configure the HS-DSCH based on tables defined in 3GPP TS 25.214. In order for the test set to accept this setting, the MAC-hs block size must be large enough to carry at least a single MAC-d PDU.
When
Current MIMO Configuration
Status
is Active
, the primary precoding weight will be static and is determined
by the PS Data Primary Precoding Weight, and the number
of scheduled transport blocks will be static and is determined
by the PS Data Primary Precoding Weight and HS-DSCH CQI
Value for MIMO.
Reported
CQI
This setting is similar to the CQI Value setting except that the test set uses the UE reported CQI values received on the HS-DPCCH channel rather than the assigned CQI Value .
The test set continually adjusts the HS-DSCH configuration to match the CQI table in 3GPP TS 25.214 that corresponds to the Current UE HS-DSCH Category. If the test set has not yet received a CQI report from the UE, it uses a CQI value of 8 to configure the HS-DSCH each time a call is connected. Note: The test set cannot receive CQI reports if the CQI Feedback Cycle (k) is set to zero.
The test set ensures that the MAC-hs block size is large enough to contain at least one MAC-d PDU. Therefore, the smallest CQI value the test set uses for a 336 bit MAC-d PDUs is 5 and the smallest CQI value the test set uses for 656 bit MAC-d PDUs is 8 regardless of whether the UE reports smaller CQI values.
When
Current MIMO Configuration
Status
is Active
, the test set contunually adjusts the number of DL transport
blocks as per the UE-preferred number of transport blocks
from the reported CQI value. If one tranport block is
preferred by the UE, the test set continually adjusts
the number of DL HS-PDSCHs as per the reported CQI value
that corresponds to the Current UE HS-DSCH Category. If
two tranport blocks are preferred by the UE, the UE always
asks for 15 HS-PDSCHs in the downlink.
When
Current MIMO Configuration
Status
is Active
, the test set contunually adjusts the DL primary precoding
weight as per the UE-preferred primary precoding weight
from the reported PCI value.
User Defined
When this setting is selected, the test set applies the user defined PS data parameters ( PS Data User Defined Active HS-PDSCHs , PS Data User Def Transport Block Size Index , and PS Data User Defined Modulation Type ) rather than automatically configuring them as is done when the PS Data Configuration Type is set to CQI Value or Reported CQI . In order for the test set to accept this setting, the MAC-hs block size must be large enough to carry at least a single MAC-d PDU
When
Current MIMO Configuration
Status
is Active
, the primary precoding weight will be static and is determined
by the PS Data Primary Precoding Weight, and the number
of scheduled transport blocks will be static and is determined
by the PS Data Primary Precoding Weight and HS-DSCH CQI
Value for MIMO.
GPIB command: CALL:HSDPa:SERVice:PSData:HSDSchannel:CONFig[:TYPE]
CQI Value
This parameter
is only applicable when the PS Data HS-DSCH
Configuration Type is set to CQI
Value
. The test set supports an HSDPA packet data
connection as defined by 3GPP TS 34.108 6.10.2.4.5.1 (see
GPRS
Radio Access Bearer ). You must specify some aspects of
the channel configuration by specifying a
CQI Value
.
Based on
the CQI Value
setting
and the Current
UE HS-DSCH Category , the test set sets the MAC-hs transport
block size, number of HS-PDSCHs, modulation type and IR buffer
size (N IR ) to the values in
3GPP TS 25.214 s6A.2 Tables 7A-E. The test set uses the Current
UE HS-DSCH Category to set the inter-TTI interval, number
of HARQ processes, and IR buffer size (N
IR ) as described in GPRS Radio Access
Bearer .
CQI
Value
cannot be set to 7 or less if PS
Data HS-DSCH MAC-d PDU Size is set to 656 bits (because
doing so would cause the MAC-hs transport block size to be
too small to carry even a single MAC-d PDU). The number of
HS-PDSCHs specified by the CQI
Value
, when added to the PS Data First
HS-PDSCH Channel Code cannot exceed 15 (otherwise the
HS-PDSCHs would collide with the downlink OCNS channels).
Note that
when you select a CQI Value
that
is defined by 3GPP TS 25.214 to have a non-zero "Reference
power adjustment", the test set decreases the power present
in the HS-PDSCHs accordingly (as expected, throughput no longer
increases once you pass this point in the CQI table; rather,
throughput decreases as HS-PDSCH power decreases). This change
in power is reflected in the
Conn Desired
column of the Downlink
Code Channel Information screen. For example, for a category
12 UE, if you set CQI Value
to 18
, the power in the HS-PDSCHs
is reduced from the HSDPA Cell 1 Connected
HS-PDSCHs Level (Sum) setting of
-3 dB
to -6 dB.
CQI
Value
can be set between 5 and 30. The following table,
MAC-hs
and IP Bit Rates (kbps) versus CQI Value and UE Category
, summarizes the MAC-hs and IP bit rates achieved for each CQI Value
, based on UE category.
The MAC-hs bit rate is determined by multiplying the MAC-hs block size by the number of MAC-hs blocks transmitted per second. If inter-TTI interval * number of HARQ processes < 6, the number of MAC-hs blocks transmitted in 12 ms is equal to the number of HARQ processes, and the following formula applies:
MAC-hs bit rate = (MAC-hs block size in bits)*(number of HARQ processes)/12 ms
The maximum theoretical IP bit rate is determined by multiplying the number of IP bits delivered in each MAC-hs block by the number of MAC-hs blocks transmitted per second. If inter-TTI interval * number of HARQ processes < 6, then the following formula applies:
IP bit rate = FLOOR[((MAC-hs block size in bits) - (21 MAC-hs header bits))/(MAC-d PDU Size)]*(MAC-d PDU Size - 16 header bits)*(number of HARQ processes)/12 ms
Note that although the bit rates are equal between categories 1/2, 3/4, and 5/6, due to the larger IR buffer size of categories 2, 4 and 6, in a network these categories may realize higher actual data rates.
|
|||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
1, 2 | 3, 4 | 5, 6 | 7, 8 | 9, 13, 17 (64QAM/MIMO not configured) | 10, 14, 18 (64QAM/MIMO not configured) | 11 | 12 | 13, 17 (64QAM configured) | 14, 18 (64QAM configured) | |||||||||||||||
CQI Value | MAC-hs (kbps) | IP (kbps) | MAC-hs (kbps) | IP (kbps) | MAC-hs (kbps) | IP (kbps) | MAC-hs (kbps) | IP (kbps) MAC-d PDU Size = 336 bits |
IP (kbps) MAC-d PDU Size = 656 bits |
MAC-hs (kbps) | IP (kbps) MAC-d PDU Size = 336 bits |
IP (kbps) MAC-d PDU Size = 656 bits |
MAC-hs (kbps) | IP (kbps) MAC-d PDU Size = 336 bits |
IP (kbps) MAC-d PDU Size = 656 bits |
MAC-hs (kbps) | IP (kbps) | MAC-hs (kbps) | IP (kbps) | MAC-hs (kbps) | IP (kbps) MAC-d PDU Size = 336 bits |
IP (kbps) MAC-d PDU Size = 656 bits |
MAC-hs (kbps) | IP (kbps) MAC-d PDU Size = 336 bits |
IP (kbps) MAC-d PDU Size = 656 bits |
5 | 63 | 53 | 94 | 80 | 189 | 160 | 189 | 160 | N/A | 189 | 160 | N/A | 189 | 160 | N/A | 94 | 80 | 189 | 160 | 188 | 160 | N/A | 188 | 160 | N/A |
6 | 77 | 53 | 115 | 80 | 231 | 160 | 231 | 160 | N/A | 231 | 160 | N/A | 231 | 160 | N/A | 115 | 80 | 231 | 160 | 232 | 160 | N/A | 232 | 160 | N/A |
7 | 108 | 53 | 163 | 80 | 325 | 160 | 325 | 160 | N/A | 325 | 160 | N/A | 325 | 160 | N/A | 163 | 80 | 325 | 160 | 324 | 160 | N/A | 324 | 160 | N/A |
8 | 132 | 107 | 198 | 160 | 396 | 320 | 396 | 320 | 320 | 396 | 320 | 320 | 396 | 320 | 320 | 198 | 160 | 396 | 320 | 396 | 320 | 320 | 396 | 320 | 320 |
9 | 155 | 107 | 233 | 160 | 466 | 320 | 466 | 320 | 320 | 466 | 320 | 320 | 466 | 320 | 320 | 233 | 160 | 466 | 320 | 464 | 320 | 320 | 464 | 320 | 320 |
10 | 210 | 160 | 316 | 240 | 631 | 480 | 631 | 480 | 320 | 631 | 480 | 320 | 631 | 480 | 320 | 316 | 240 | 631 | 480 | 632 | 480 | 320 | 632 | 480 | 320 |
11 | 247 | 213 | 371 | 320 | 742 | 640 | 742 | 640 | 640 | 742 | 640 | 640 | 742 | 640 | 640 | 371 | 320 | 742 | 640 | 744 | 640 | 640 | 744 | 640 | 640 |
12 | 290 | 267 | 436 | 400 | 871 | 800 | 871 | 800 | 640 | 871 | 800 | 640 | 871 | 800 | 640 | 436 | 400 | 871 | 800 | 872 | 800 | 640 | 872 | 800 | 640 |
13 | 380 | 320 | 570 | 480 | 1140 | 960 | 1140 | 960 | 960 | 1140 | 960 | 960 | 1140 | 960 | 960 | 570 | 480 | 1140 | 960 | 1144 | 960 | 960 | 1144 | 960 | 960 |
14 | 431 | 373 | 646 | 560 | 1292 | 1120 | 1292 | 1120 | 960 | 1292 | 1120 | 960 | 1292 | 1120 | 960 | 646 | 560 | 1292 | 1120 | 1296 | 1120 | 960 | 1296 | 1120 | 960 |
15 | 553 | 480 | 830 | 720 | 1660 | 1440 | 1660 | 1440 | 1600 | 1660 | 1440 | 1600 | 1660 | 1440 | 1600 | 830 | 720 | 1660 | 1440 | 1664 | 1440 | 1600 | 1664 | 1440 | 1600 |
16 | 594 | 533 | 891 | 800 | 1783 | 1600 | 1783 | 1600 | 1600 | 1783 | 1600 | 1783 | 1600 | 1600 | 830 * | 720 * | 1660 * | 1440 * | 1788 | 1600 | 1600 | 1788 | 1600 | 1600 | |
17 | 698 | 640 | 1047 | 960 | 2095 | 1920 | 2095 | 1920 | 1920 | 2095 | 1920 | 1920 | 2095 | 1920 | 1920 | 830 * | 720 * | 1660 * | 1440 * | 2100 | 1920 | 1920 | 2100 | 1920 | 1920 |
18 | 777 | 693 | 1166 | 1040 | 2332 | 2080 | 2332 | 2080 | 2240 | 2332 | 2080 | 2240 | 2332 | 2080 | 2240 | 830 * | 720 * | 1660 * | 1440 * | 2336 | 2080 | 2240 | 2336 | 2080 | 2240 |
19 | 881 | 800 | 1322 | 1200 | 2644 | 2400 | 2644 | 2400 | 2560 | 2644 | 2400 | 2560 | 2644 | 2400 | 2560 | 830 * | 720 * | 1660 * | 1440 * | 2648 | 2400 | 2560 | 2648 | 2400 | 2560 |
20 | 981 | 907 | 1472 | 1360 | 2944 | 2720 | 2944 | 2720 | 2560 | 2944 | 2720 | 2560 | 2944 | 2720 | 2560 | 830 * | 720 * | 1660 * | 1440 * | 2948 | 2720 | 2560 | 2948 | 2720 | 2560 |
21 | 1092 | 1013 | 1639 | 1520 | 3277 | 3040 | 3277 | 3040 | 2880 | 3277 | 3040 | 2880 | 3277 | 3040 | 2880 | 830 * | 720 * | 1660 * | 1440 * | 3284 | 3040 | 2880 | 3284 | 3040 | 2880 |
22 | 1195 | 1120 | 1792 | 1680 | 3584 | 3360 | 3584 | 3360 | 3200 | 3584 | 3360 | 3200 | 3584 | 3360 | 3200 | 830 * | 720 * | 1660 * | 1440 * | 3592 | 3360 | 3200 | 3592 | 3360 | 3200 |
23 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 4860 | 4480 | 4480 | 4860 | 4480 | 4480 | 4860 | 4480 | 4480 | 830 * | 720 * | 1660 * | 1440 * | 4868 | 4480 | 4480 | 4868 | 4480 | 4480 |
24 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 5709 | 5280 | 5440 | 5709 | 5280 | 5440 | 5709 | 5280 | 5440 | 830 * | 720 * | 1660 * | 1440 * | 5716 | 5280 | 5440 | 5716 | 5280 | 5440 |
25 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 7206 | 6720 | 6720 | 7206 | 6720 | 6720 | 7206 | 6720 | 6720 | 830 * | 720 * | 1660 * | 1440 * | 7212 | 6720 | 6720 | 7212 | 6720 | 6720 |
26 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 7206 * | 6720 * | 6720 * | 8160 | 8320 | 8619 | 8160 | 8320 | 830 * | 720 * | 1660 * | 1440 * | 7888 | 7360 | 7680 | 7888 | 7360 | 7680 | |
27 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 7206 * | 6720 * | 6720 * | 8619* | 8160* | 8320* | 10877 | 10240 | 10560 | 830 * | 720 * | 1660 * | 1440 * | 10884 | 10240 | 10560 | 10884 | 10240 | 10560 |
28 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 7206 * | 6720 * | 6720 * | 8619* | 8160* | 8320* | 11685 | 11040 | 11200 | 830 * | 720 * | 1660 * | 1440 * | 13252 | 12480 | 12800 | 13252 | 12480 | 12800 |
29 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 7206 * | 6720 * | 6720 * | 8619* | 8160* | 8320* | 12111 | 11520 | 11520 | 830 * | 720 * | 1660 * | 1440 * | 16132 | 15200 | 15680 | 16132 | 15200 | 15680 |
30 | 1195 * | 1120 * | 1792 * | 1680 * | 3584 * | 3360 * | 7206 * | 6720 * | 6720 * | 8619* | 8160* | 12779 | 12160 | 12160 | 830 * | 720 * | 1660 * | 1440 * | 16132* | 15200* | 15680* | 19288 | 18240 | 18560 | |
* denotes that a "Reference power
adjustment" is specified by the
CQI Value (in other
words, although the bit rate is the same as the bit
rate for the preceding
CQI Value , the power in the HS-PDSCHs is reduced). |
|||||||||||||||||||||||||
Bold font denotes 16QAM modulation. Emphasis font denotes 64QAM modulation. |
GPIB command: CALL:HSDPa:SERVice:PSData:CQI[:VALue]
CQI Value
for
MIMO
This parameter
specifies the CQI value used to configure the HSDPA channel
when Current MIMO Configuration
State
is Active
, PS Data HS-DSCH Configuration Type
is set to CQI Value
, and PS Data HS-DSCH MAC Entity
is
set to MAC_ehs
.
GPIB command: CALL:HSDPa:SERVice:PSData:MIMO:CQI:VALue
PS Data Primary Precoding Weight
This parameter
specifies the primary precoding weight when MIMO is configured
in the PS Data call. This seeting applies when PS
Data HSDPA MIMO State
is On
, PS Data HS-DSCH Configuration Type
is set to CQI Value
or
User Defined
,
and PS Data HS-DSCH MAC Entity
is set to
MAC_ehs
.
GPIB command: CALL:HSDPa:SERVice:PSData:MIMO:PPWeight[:STATic]
PS Data User Def Number of Transport
Blocks
This parameter
specifies the number of DL transport blocks when PS Data HS-DSCH Configuration Type is set
to User Defined
, PS Data HS-DSCH MAC Entity
is
set to MAC_ehs
, and PS Data HSDPA MIMO State
is
On
, .
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:MIMO:TBLock:COUNt
PS Data User Defined Active HS-PDSCHs
Sets the number of HS-PDSCHs transmitted by the test set. This setting affects the transport block size (see PS Data User Def Transport Block Size Index ). You can change this setting while on a connection.
The number of HS-PDSCHs specified by this setting, when added to the PS Data First HS-PDSCH Channel Code cannot exceed 15 (otherwise the HS-PDSCHs would collide with the downlink OCNS channels).
This parameter
is only applicable when the PS Data HS-DSCH
Configuration Type is set to User
Defined
.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:HSPDschannel:COUNt [:DCH]
PS
Data User Defined Active HS-PDSCHs(FACH)
Sets the number of HS-PDSCHs transmitted by the test set. This setting affects the transport block size (see PS Data User Def Transport Block Size Index ) and Cell_FACH PS Data Modulation Type. You can change this setting while on a connection.
The number of HS-PDSCHs specified by this setting, when added to the PS Data First HS-PDSCH Channel Code cannot exceed 15 (otherwise the HS-PDSCHs would collide with the downlink OCNS channels).
This parameter is only applicable when the
PS
Data HS-DSCH Configuration Type is set to User
Defined
.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:HSPDschannel:COUNt:FACH
PS Data User Def Transport Block
Size Index
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:TBSize:INDex[:DCH]
PS
Data User Def Transport Block Size Index
(FACH)
This parameter specifies transport block size index. The setting is used along with CELL_FACH PS Data Number of Active HS-PDSCHs and CELL_FACH PS Data Modulation Type to determine the actual transport block size for HS-DSCH CELL_FACH operation.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:TBSize:INDex:FACH
PS Data User Defined Modulation Type
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:MODulation[:TYPE][:DCH]
PS
Data User Defined Modulation Type (FACH)
This parameter specifies whether QPSK, 16QAM or 64QAM modulation is used on the currently active HS-PDSCH channels. The setting is used along with CELL_FACH PS Data Number of Active HS-PDSCHs and CELL_FACH PS Data Transport Block Size Index to determine the actual transport block size for HS-DSCH CELL_FACH operation.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:MODulation[:TYPE]:FACH
PS Data User Def Secondary TB Size
Index
This parameter
specifies the secondary transport block size index for MIMO
when PS Data HS-DSCH Configuration Type
is set to User Defined
, PS Data HS-DSCH MAC Entity
is set to MAC_ehs
, and PS Data HSDPA MIMO State
is On
.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:STBSize:INDex
PS Data User Def Secondary TB Modulation
Type
This parameter
specifies the modulation type of the secondary transport block
and determines the actual secondary transport block size.
The setting applies when PS Data HS-DSCH Configuration
Type is set to User Defined
, PS Data HS-DSCH MAC Entity
is set to MAC_ehs
, and PS Data HSDPA MIMO State
is On
, .
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:STBLock:MODulation[:TYPE]
PS Data HS-DSCH 64QAM Configured
State
GPIB command: CALL:HSDPa:SERVice:PSData:QAM64:STATe[:DCH]
PS
Data HS-DSCH 64QAM Configured State
(FACH)
GPIB command: CALL:HSDPa:SERVice:PSData:QAM64:STATe:FACH
PS Data HS-DSCH TB Size Table
GPIB command: CALL:HSDPa:SERVice:PSData:MACEHS:HSDSchannel:TBSTable:ALIGnment
PS Data User Def Transport Block
Size Index
Sets k i (transport block size index) as described in 3GPP TS 25.321 s9.2.3. You can change this setting while on a connection.
You cannot
directly set the HS-DSCH (MAC-hs) transport block size. Rather,
you must set the PS Data User Defined Active
HS-PDSCHs , PS Data User Defined Modulation
Type , and PS Data User Def
Transport Block Size Index
. The test set then calculates
the HS-DSCH transport block size from these three settings.
You can query the transport block size using the CALL:STATus:HSDSchannel:TBSize? command.
3GPP TS 25.321 Annex A provides a mapping of the index k t to HS-DSCH transport block size. 25.321 s9.2.3.1 specifies that k t = k i + k 0,i . 25.321 Table 9.2.3.1 provides values for k 0,i for different modulation types and number of active HS-PDSCHs. Thus, the HS-DSCH transport block size can be directly determined from the modulation type, number of active HS-PDSCHs, and transport block size index. For example, for a modulation type of 16QAM and 5 HS-PDSCHs, k 0,i = 131. Choosing a value of k i = 48 results in a value of 179 for k t , which is an HS-DSCH transport block size of 7298 bits.
Note, if
you set PS Data User Def Transport
Block Size Index
to a value that results in a transport
block size that exceeds the maximum value for the Current UE HS-DSCH Category (see 3GPP TS
25.306 Table 5.1a), the test set will post a warning, but
will still transmit using the requested block size. Transmitting
too large of a block to the UE will likely result in undesirable
behavior (the UE may stop its HS-DSCH reception altogether,
and you may need to end and re-establish the connection with
a smaller block size).
Note, the test set ensures that the transport block size index does not cause the MAC-hs to become too small to carry a single MAC-d PDU (configured using the PS Data HS-DSCH MAC-d PDU Size parameter). Therefore, if a change is made to this parameter that results in too small of MAC-hs block size it will be rejected by the test set.
GPIB command: CALL:HSDPa:SERVice:RBTest:UDEFined:TBSize:INDex
This parameter
is only applicable when the PS Data HS-DSCH
Configuration Type is set to User
Defined
.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:TBSize:INDex
PS Data User Defined Modulation Type
Sets the modulation type used on the HS-PDSCHs. This setting affects the transport block size (see PS Data User Def Transport Block Size Index ). You can change this setting while on a connection.
Note, not
all UE categories support 16QAM. If you set
PS Data User Defined Modulation Type
to
16QAM
when Current UE HS-DSCH Category
is reporting a category that does not support 16QAM (see 3GPP
TS 25.306 Table 5.1a), the test set will post a warning, but
will still transmit using 16QAM modulation.
Note, if
you set PS Data User Defined
Modulation Type
to a value that results in a transport
block size that exceeds the maximum value for the Current UE HS-DSCH Category (see 3GPP TS
25.306 Table 5.1a), the test set will post a warning, but
will still transmit using the requested block size. See PS
Data User Def Transport Block Size Index for more details.
This parameter
is only applicable when the PS Data HS-DSCH
Configuration Type is set to User
Defined
.
GPIB command: CALL:HSDPa:SERVice:PSData:UDEFined:MODulation[:TYPE]
PS Data Minimum Inter-TTI Interval
This parameter sets the control state and value of the of the minimum inter-TTI interval used on the downlink.
The control state can be set to Auto or Manual mode. When in Auto mode, the minimum inter-TTI used on an HSDPA or HSPA PS data call is the minimum inter-TTI supported by the Current UE HS-DSCH Category. When in set to a value (manual mode), this parameter controls the absolute inter-TTI interval.
Note, not
all UE categories support an inter-TTI interval of less than
3 (see 3GPP TS 25.306 Table 5.1a). If you set
PS Data Minimum Inter-TTI Interval
to a value that
is not supported by the Current UE HS-DSCH
Category , the test set will post a warning, but will
still transmit using the specified inter-TTI interval.
You can change this setting while on a connection.
GPIB commands:
Control State: CALL:HSDPa:SERVice:PSData:ITTI[:INTerval]:MINimum:CONTrol:AUTO
Manual Setting: CALL:HSDPa:SERVice:PSData:ITTI[:INTerval]:MINimum:MANual
PS Data HS-DSCH 64QAM Configured State
GPIB command: CALL:HSDPa:SERVice:PSData:QAM64:STATe
PS Data HS-DSCH TB Size Table
GPIB command: CALL:HSDPa:SERVice:PSData:MACEHS:HSDSchannel:TBSTable:ALIGnment
Secondary
Serving Cell HS-DSCH Configuration Type
GPIB command: CALL:HSDPa:SSCell:PSData:HSDschannel:CONFig[:TYPE]
Secondary Serving Cell CQI Value
GPIB command: CALL:HSDPa:SSCell:PSData:CQI[:VALue]
PS Data User Defined Secondary Cell
Active HS-PDSCHs
GPIB command: CALL:HSDPa:SSCell:PSData:UDEFined:HSPDschannel:COUNt
PS Data User Def Secondary Cell TB
Size Index
GPIB command: CALL:HSDPa:SSCell:PSData:UDEFined:TBSize:INDex
PS Data User Defined Secondary Cell
Modulation Type
GPIB command: CALL:HSDPa:SSCell:PSData:UDEFined:MODulation[:TYPE]
PSD Secondary Cell Minimum Inter-TTI
Interval
GPIB commands:
Control State: CALL:HSDPa:SSCell:PSData:ITTI[:INTerval]:MINimum:CONTrol:AUTO
Manual Setting: CALL:HSDPa:SSCell:PSData:ITTI[:INTerval]:MINimum:MANual
PSD Secondary Cell HS-DSCH 64QAM
Configured State
GPIB command: CALL:HSDPa:SSCell:PSData:UDEFined:QAM64:STATe
PSD Secondary Cell HS-DSCH TB Size
Table
GPIB command: CALL:HSDPa:SSCell:PSData:MACEHS:HSDSchannel:TBSTable:ALIGnment